Кто расшифровал энигму шифровальную машину. Как были взломаны шифровальные коды гитлеровской германии

Немецкая шифровальная машинка была названа "Загадкой" не для красного словца. Вокруг истории ее захвата и расшифровки радиоперехватов ходят легенды, и во многом этому способствует кинематограф. Мифы и правда о немецком шифраторе - в нашем материале. Перехвату противником сообщений, как известно, можно противопоставить только их надежную защиту или шифрование. История шифрования уходит корнями в глубь веков - один из самых известных шифров называется шифром Цезаря. Потом предпринимались попытки механизации процесса шифрования и дешифрования: до нас дошел диск Альберти, созданный в 60-х годах XV века Леоном Баттиста Альберти, автором "Трактата о шифрах" - одной из первых книг об искусстве шифровки и дешифровки.

Машинка Enigma, использовавшаяся Германией в годы Второй мировой войны, была не уникальна. Но от аналогичных устройств, взятых на вооружение другими странами, она отличалась относительной простотой и массовостью использования: применить ее можно было практически везде - и в полевых условиях, и на подводной лодке. История Enigma берет начало в 1917 году - тогда голландец Хьюго Коч получил на нее патент. Работа ее заключалась в замене одних букв другими за счёт вращающихся валиков. Историю декодирования машины Enigma мы знаем в основном по голливудским блокбастерам о подводных лодках. Однако фильмы эти, по мнению историков, имеют мало общего с реальностью. Например, в картине 2000 года U-571 рассказывается о секретном задании американских моряков захватить шифровальную машинку Enigma, находящуюся на борту немецкой субмарины U-571. Действие разворачивается в 1942 году в Северной Атлантике. Несмотря на то, что фильм отличается зрелищностью, история, рассказанная в нем, совершенно не отвечает историческим фактам. Подводная лодка U-571 действительно состояла на вооружении нацистской Германии, но была потоплена в 1944 году, а машинку Enigma американцам удалось захватить лишь в самом конце войны, и серьезной роли в приближении Победы это не сыграло. К слову, в конце фильма создатели сообщают исторически верные факты о захвате шифратора, однако появились они по настоянию консультанта картины, англичанина по происхождению. С другой стороны режиссер фильма Джонатан Мостов заявил, что его лента "представляет собой художественное произведение".

Европейские же фильмы стараются соблюсти историческую точность, однако доля художественного вымысла присутствует и в них. В фильме Майкла Аптеда "Энигма", вышедшего в 2001 году, рассказывается история математика Тома Джерико, которому предстоит всего за четыре дня разгадать обновленный код немецкой шифровальной машинки. Конечно, в реальной жизни на расшифровку кодов ушло гораздо больше времени. Сначала этим занималась криптологическая служба Польши. И группа математиков - Мариан Реевский, Генрих Зыгальский и Ежи Рожицкий, - изучая вышедшие из употребления немецкие шифры, установили, что так называемый дневной код, который меняли каждый день, состоял из настроек коммутационной панели, порядка установки роторов, положений колец и начальных установок ротора. Случилось это в 1939 году, еще перед захватом Польши нацистской Германией. Также польское "Бюро шифров", созданное специально для "борьбы" с Enigma, имело в своем распоряжении несколько экземпляров работающей машинки, а также электромеханическую машинку Bomba, состоявшую из шести спаренных немецких устройств, которая помогала в работе с кодами. Именно она впоследствии стала прототипом для Bombe - изобретения Алана Тьюринга. Свои наработки польская сторона сумела передать британским спецслужбам, которые и организовали дальнейшую работу по взлому "загадки". Кстати, впервые британцы заинтересовали Enigma еще в середине 20–х годов, однако, быстро отказались от идеи расшифровать код, видимо, посчитав, что сделать это невозможно. Однако с началом Второй мировой войны ситуация изменилась: во многом благодаря загадочной машинке Германия контролировала половину Атлантики, топила европейские конвои с продуктами и боеприпасами. В этих условиях Великобритании и другим странам антигитлеровской коалиции обязательно нужно было проникнуть в загадку Enigma.

Сэр Элистер Деннисон, начальник Государственной школы кодов и шифров, которая располагалась в огромном замке Блетчли–парк в 50 милях от Лондона, задумал и провел секретную операцию Ultra, обратившись к талантливым выпускникам Кембриджа и Оксфорда, среди которых был и известный криптограф и математик Алан Тьюринг. Работе Тьюринга над взломом кодов машинки Enigma посвящен вышедший в 2014 году фильм "Игра в имитацию". Еще в 1936 году Тьюринг разработал абстрактную вычислительную "машину Тьюринга", которая может считаться моделью компьютера - устройства, способного решить любую задачу, представленную в виде программы - последовательности действий. В школе кодов и шифров он возглавлял группу Hut 8, ответственную за криптоанализ сообщений ВМФ Германии и разработал некоторое количество методов взлома немецкого шифратора. Помимо группы Тьюринга, в Блетчли–парке трудились 12 тысяч сотрудников. Именно благодаря их упорному труду коды Enigma поддались расшифровке, но взломать все шифры так и не удалось. Например, шифр "Тритон" успешно действовал около года, и даже когда "парни из Блетчли" раскрыли его, это не принесло желаемого результата, так как с момента перехвата шифровки до передачи информации британских морякам проходило слишком много времени.

Все дело в том, что по распоряжению Уинстона Черчилля все материалы расшифровки поступали только начальникам разведслужб и сэру Стюарту Мензису, возглавлявшему МИ-6. Такие меры предосторожности были предприняты, чтобы немцы не догадались о раскрытии шифров. В то же время и эти меры не всегда срабатывали, тогда немцы меняли варианты настройки Enigma, после чего работа по расшифровке начиналась заново. В "Игре в имитацию" затронута и тема взаимоотношений британских и советских криптографов. Официальный Лондон действительно был не уверен в компетенции специалистов из Советского Союза, однако по личному распоряжению Уинстона Черчилля 24 июля 1941 года в Москву стали передавать материалы с грифом Ultra. Правда, для исключения возможности раскрытия не только источника информации, но и того, что в Москве узнают о существовании Блетчли–парка, все материалы маскировались под агентурные данные. Однако в СССР узнали о работе над дешифровкой Enigma еще в 1939 году, а спустя три года на службу в Государственную школу кодов и шифров поступил советский шпион Джон Кэрнкросс, который регулярно отправлял в Москву всю необходимую информацию. Многие задаются вопросами, почему же СССР не расшифровал радиоперехваты немецкой "Загадки", хотя советские войска захватили два таких устройства еще в 1941 году, а в Сталинградской битве в распоряжении Москвы оказалось еще три аппарата. По мнению историков, сказалось отсутствие в СССР современной на тот момент электронной техники. К слову, специальный отдел ВЧК, занимающийся шифровкой и дешифровкой, был созван в СССР 5 мая 1921 года. На счету сотрудников отдела было много не очень, по понятным причинам – отдел работал на разведку и контрразведку, - афишируемых побед. Например, раскрытие уже в двадцатых годах дипломатических кодов ряда стран. Был создан и свой шифр - знаменитый "русский код", который, как говорят, расшифровать не удалось никому. Анна Лихова. *** "Засекреченную шифровальную машину третьего Рейха «Энигма» продали в Румынии" Документальный проект

Румынский аукционный дом выставил на продажу знаменитую «Энигму». Немецкая шифровальная машина бала найдена на одном из «блошиных» рынков коллекционером-криптогрофом в Бухаресте. Мужчина сразу понял, что за ценный экспонат у него в руках и, не раздумывая, приобрел машинку. Кроме того, продавец не понимал, что держит на прилавке такую ценность и продал устройство за 100 евро. Стартовая цена аппарата на аукционе составила 9 тысяч евро, в процессе торгов стоимость увеличилась в пять раз. В итоге «Энигма» ушла в руки покупателя, который сделал сделку онлайн за 45 тысяч евро. Немецкая шифровальная машина «Энигма» использовалась нацистской Германией во время Второй мировой войны. Известно, что первыми ее шифр разгадали в Польше. Считается, что это повлияло на ход войны. Мужчина нашел ее на блошином рынке среди прочего антиквариата. Продавец был уверен: это просто пишущая машинка, и был рад выручить за нее круглую сумму. Он даже не подозревал, какие деньги готовы выкладывать современные коллекционеры за немецкие «Энигмы». «Коллекционер, купивший машину на рынке, - профессор в области шифрования. Всю жизнь он посвятил «Энигме», так что прекрасно понимал, что за вещь покупает и сколько денег можно за нее получить», - говорит специалист аукциона Кристиан Гаврила. Расшифровать код «Энигмы» в годы войны удалось британскому математику Алану Тьюрингу. *** "Игра в имитацию".Худож.фильм

Описание:Реальная история человека, в далекие времена предопределившего развитие современной компьютерной техники.Вторая мировая война, сражения ведутся по всем направлениям, в том числе в сфере информации и разведки. У немцев есть огромный козырь – знаменитый шифр «Энигма», вскрыть который практически невозможно. Перебрав все варианты, военные обращаются за помощью к гражданскому лицу – математику Алану Тьюрингу. Замкнутый и эксцентричный, этот человек живет в своем мире, находится в сложных отношениях с реальностью, но его методы работы оказываются не только нетрадиционными, но и крайне эффективными. Собрав команду из лучших криптогрфов, каких можно найти, Тьюринг бросает вызов интеллектуальной мощи Третьего Рейха. В ролях:Бенедикт Камбербэтч, Кира Найтли, Мэттью Гуд, Чарльз Дэнс, Марк Стронг Премия:«Оскар» Режиссер:Мортен Тильдум Жанр:триллер, драма, военный, биография Страны:Великобритания, США (2015 г.)

Почти в любое время года английская деревня выглядит одинаково: зеленые луга, коровы, средневекового вида домики и широкое небо - иногда серое, иногда - ослепительно-голубое. Оно как раз переходило от первого режима к более редкому второму, когда пригородная электричка мчала меня до станции Блетчли. Сложно представить, что в окружении этих живописных холмов закладывались основы компьютерной науки и криптографии. Впрочем, предстоящая прогулка по интереснейшему музею развеяла все возможные сомнения.

Такое живописное место, конечно, было выбрано англичанами не случайно: неприметные бараки с зелеными крышами, расположенные в глухой деревне, - это как раз то, что было нужно, чтобы спрятать сверхсекретный военный объект, где непрерывно трудились над взломом шифров стран «оси». Пусть со стороны Блетчли-парк и не впечатляет, но та работа, которую здесь выполняли, помогла переломить ход войны.

Криптохатки

В военные времена в Блетчли-парк въезжали через главные ворота, предъявляя охране пропуск, а теперь покупают билетик на проходной. Я задержался там еще чуть-чуть, чтобы посмотреть на прилегающий магазин сувениров и временную экспозицию, посвященную технологиям разведки Первой мировой (кстати, тоже интереснейшая тема). Но главное ждало впереди.

Собственно Блетчли-парк - это около двадцати длинных одноэтажных построек, которые на английском называют hut, а на русский обычно переводят как «домик». Я про себя называл их «хатками», совмещая одно с другим. Помимо них, есть особняк (он же Mansion), где работало командование и принимались высокие гости, а также несколько вспомогательных построек: бывшие конюшни, гараж, жилые дома для персонала.

Те самые домики
Усадьба во всей красе
Внутри усадьба выглядит побогаче, чем хатки

У каждого домика - свой номер, причем номера эти имеют историческое значение, вы обязательно встретите их в любом рассказе о Блетчли-парке. В шестой, к примеру, поступали перехваченные сообщения, в восьмом занимались криптоанализом (там и работал Алан Тьюринг), в одиннадцатом стояли вычислительные машины - «бомбы». Четвертый домик позже выделили под работу над вариантом «Энигмы», который использовался на флоте, седьмой - под японскую вариацию на тему «Энигмы» и другие шифры, в пятом анализировали передачи, перехваченные в Италии, Испании и Португалии, а также шифровки немецкой полиции. Ну и так далее.

Посещать домики можно в любом порядке. Обстановка в большинстве из них очень похожая: старая мебель, старые вещи, истрепанные тетради, плакаты и карты времен Второй мировой. Все это, конечно, не лежало здесь восемьдесят лет: домики сначала переходили от одной государственной организации к другой, потом были заброшены, и только в 2014 году реставраторы скрупулезно восстановили их, спася от сноса и превратив в музей.

К этому, как принято в Англии, подошли не только тщательно, но и с выдумкой: во многих комнатах из спрятанных динамиков раздаются голоса актеров и звуки, которые создают впечатление, будто вокруг кипит работа. Заходишь и слышишь стук пишущей машинки, чьи-то шаги и радио вдалеке, а затем «подслушиваешь» чей-то оживленный разговор о недавно перехваченной шифровке.

Но настоящая диковинка - это проекции. Например, вот этот мужчина, который как бы сидит за столом, поприветствовал меня и вкратце рассказал о местных порядках.


Во многих комнатах царит полумрак - чтобы лучше были видны проекции

Интереснее всего, конечно, было посмотреть на рабочий стол Алана Тьюринга. Его кабинет находится в восьмом домике и выглядит очень скромно.


Примерно так выглядел стол Алана Тьюринга

Ну а на само творение Тьюринга - машину для расшифровки «Энигмы» - можно взглянуть в доме номер 11 - там же, где в свое время была собрана самая первая модель «бомбы».

Криптологическая бомба

Возможно, для вас это будет новостью, но Алан Тьюринг был не первым, кто расшифровал «Энигму» методом механического перебора. Его работе предшествует исследование польского криптографа Мариана Реевского. Кстати, именно он назвал машину для расшифровки «бомбой».

Польская «бомба» была значительно проще. Обратите внимание на роторы сверху

Почему «бомба»? Есть несколько разных версий. Например, по одной так якобы назывался любимый Реевским и коллегами сорт мороженого, который продавали в кафе неподалеку от бюро шифрования польского генштаба, и они позаимствовали это название. Куда более простое объяснение - в том, что в польском языке слово «бомба» может использоваться для восклицания вроде «эврика!». Ну и совсем простой вариант: машина тикала подобно бомбе.

Незадолго до захвата Польши Германией польские инженеры передали англичанам все наработки, связанные с декодированием немецких шифров, в том числе чертежи «бомбы», а также работающий экземпляр «Энигмы» - не немецкой, а польского клона, который они успели разработать до вторжения. Остальные наработки поляков были уничтожены, чтобы разведка Гитлера ничего не заподозрила.

Проблема заключалась в том, что польский вариант «бомбы» был рассчитан только на машину «Энигма I» с тремя фиксированными роторами. Еще до начала войны немцы ввели в эксплуатацию усовершенствованные варианты «Энигмы», где роторы заменялись каждый день. Это сделало польский вариант полностью непригодным.

Если вы смотрели «Игру в имитацию», то уже неплохо знакомы с обстановкой в Блетчли-парке. Однако режиссер не удержался и сделал несколько отступлений от реальных исторических событий. В частности, Тьюринг не создавал прототип «бомбы» собственноручно и никогда не называл ее «Кристофером».


Популярный английский актер Криптокод Подбирач в роли Алана Тьюринга

На основе польской машины и теоретических работ Алана Тьюринга инженеры British Tabulating Machine Company создали те «бомбы», которые поставлялись в Блетчли-парк и на другие секретные объекты. К концу войны машин было уже 210, однако с окончанием военных действий все «бомбы» уничтожили по приказу Уинстона Черчилля.

Зачем британским властям понадобилось уничтожать такой прекрасный дата-центр? Дело в том, что «бомба» не является универсальным компьютером - она предназначена исключительно для декодирования сообщений, зашифрованных «Энигмой». Как только нужда в этом отпала, машины тоже стали ненужными, а их компоненты можно было распродать.

Другой причиной, возможно, было предчувствие, что Советский Союз в дальнейшем окажется не лучшим другом Великобритании. Что, если в СССР (или где-нибудь еще) стали бы использовать технологию, похожую на «Энигму»? Тогда лучше никому не демонстрировать возможность вскрывать ее шифры быстро и автоматически.

С военных времен сохранилось только две «бомбы» - они были переданы в GCHQ, Центр правительственной связи Великобритании (считай, современный аналог Блетчли-парка). Говорят, они были демонтированы в шестидесятые годы. Зато в GCHQ милостиво согласились предоставить музею в Блетчли старые чертежи «бомб» - увы, не в лучшем состоянии и не целиком. Тем не менее силами энтузиастов их удалось восстановить, а затем создать и несколько реконструкций. Они-то сейчас и стоят в музее.

Занятно, что во время войны на производство первой «бомбы» ушло около двенадцати месяцев, а вот реконструкторы из BCS Computer Conservation Society , начав в 1994 году, трудились около двенадцати лет. Что, конечно, неудивительно, учитывая, что они не располагали никакими ресурсами, кроме своих сбережений и гаражей.

Как работала «Энигма»

Итак, «бомбы» использовались для расшифровки сообщений, которые получались на выходе после шифрования «Энигмой». Но как именно она это делает? Подробно разбирать ее электромеханическую схему мы, конечно, не будем, но общий принцип работы узнать интересно. По крайней мере, мне было интересно послушать и записать этот рассказ со слов работника музея.

Устройство «бомбы» во многом обусловлено устройством самой «Энигмы». Собственно, можно считать, что «бомба» - это несколько десятков «Энигм», составленных вместе таким образом, чтобы перебирать возможные настройки шифровальной машины.

Самая простая «Энигма» - трехроторная. Она широко применялась в вермахте, и ее дизайн предполагал, что ей сможет пользоваться обычный солдат, а не математик или инженер. Работает она очень просто: если оператор нажимает, скажем, P, под одной из букв на панели загорится лампочка, например под буквой Q. Остается только перевести в морзянку и передать.

Важный момент: если нажать P еще раз, то очень мал шанс снова получить Q. Потому что каждый раз, когда ты нажимаешь кнопку, ротор сдвигается на одну позицию и меняет конфигурацию электрической схемы. Такой шифр называется полиалфавитным.


Посмотрите на три ротора наверху. Если вы, например, вводитие Q на клавиатуре, то Q сначала заменится на Y, потом на S, на N, потом отразится (получится K), снова трижды изменится и на выходе будет U. Таким образом, Q будет закодирована как U. Но что, если ввести U? Получится Q! Значит, шифр симметричный. Это было очень удобно для военных применений: если в двух местах имелись «Энигмы» с одинаковыми настойками, можно было свободно передавать сообщения между ними.

У этой схемы, правда, есть большой недостаток: при вводе буквы Q из-за отражения в конце ни при каких условиях нельзя было получить Q. Немецкие инженеры знали об этой особенности, но не придали ей особого значения, а вот британцы нашли возможность эксплуатировать ее. Откуда англичанам было известно о внутренностях «Энигмы»? Дело в том, что в ее основе лежала совершенно не секретная разработка. Первый патент на нее был подан в 1919 году и описывал машину для банков и финансовых организаций, которая позволяла обмениваться шифрованными сообщениями. Она продавалась на открытом рынке, и британская разведка успела приобрести несколько экземпляров. По их же примеру, кстати, была сделана и британская шифровальная машина Typex, в которой описанный выше недостаток исправлен.


Самая первая модель Typex. Целых пять роторов!

У стандартной «Энигмы» было три ротора, но всего можно было выбрать из пяти вариантов и установить каждый из них в любое гнездо. Именно это и отражено во втором столбце - номера роторов в том порядке, в котором их предполагается ставить в машину. Таким образом, уже на этом этапе можно было получить шестьдесят вариантов настроек. Рядом с каждым ротором расположено кольцо с буквами алфавита (в некоторых вариантах машины - соответствующие им числа). Настройки для этих колец - в третьем столбце. Самый широкий столбец - это уже изобретение немецких криптографов, которого в изначальной «Энигме» не было. Здесь приведены настройки, которые задаются при помощи штекерной панели попарным соединением букв. Это запутывает всю схему и превращает ее в непростой пазл. Если посмотреть на нижнюю строку нашей таблицы (первое число месяца), то настройки будут такими: в машину слева направо ставятся роторы III, I и IV, кольца рядом с ними выставляются в 18, 24 и 15, а затем на панели штекерами соединяются буквы N и P, J и V и так далее. С учетом всех этих факторов получается около 107 458 687 327 300 000 000 000 возможных комбинаций - больше, чем прошло секунд с Большого взрыва. Неудивительно, что немцы считали эту машину крайне надежной.

Существовало множество вариантов «Энигмы», в частности на подводных лодках использовался вариант с четырьмя роторами.

Взлом «Энигмы»

Взломать шифр, как водится, позволила ненадежность людей, их ошибки и предсказуемость.

Руководство к «Энигме» говорит, что нужно выбрать три из пяти роторов. Каждая из трех горизонтальных секций «бомбы» может проверять одно возможное положение, то есть одна машина единовременно может прогнать три из шестидесяти возможных комбинаций. Чтобы проверить все, нужно либо двадцать «бомб», либо двадцать последовательных проверок.

Однако немцы сделали приятный сюрприз английским криптографам. Они ввели правило, по которому одинаковое положение роторов не должно повторяться в течение месяца, а также в течение двух дней подряд. Звучит так, будто это должно было повысить надежность, но в реальности привело к обратному эффекту. Получилось, что к концу месяца количество комбинаций, которые нужно было проверять, значительно уменьшалось.

Вторая вещь, которая помогла в расшифровке, - это анализ трафика. Англичане слушали и записывали шифрованные сообщения армии Гитлера с самого начала войны. О расшифровке тогда речь не шла, но иногда бывает важен сам факт коммуникации плюс такие характеристики, как частота, на которой передавалось сообщение, его длина, время дня и так далее. Также при помощи триангуляции можно было определить, откуда было отправлено сообщение.

Хороший пример - передачи, которые поступали с Северного моря каждый день из одних и тех же локаций, в одно и то же время, на одной и той же частоте. Что это могло быть? Оказалось, что это метеорологические суда, ежедневно славшие данные о погоде. Какие слова могут содержаться в такой передаче? Конечно, «прогноз погоды»! Такие догадки открывают дорогу для метода, который сегодня мы называем атакой на основе открытых текстов, а в те времена окрестили «подсказками» (cribs).

Поскольку мы знаем, что «Энигма» никогда не дает на выходе те же буквы, что были в исходном сообщении, нужно последовательно сопоставить «подсказку» с каждой подстрокой той же длины и посмотреть, нет ли совпадений. Если нет, то это строка-кандидат. Например, если мы проверяем подсказку «погода в Бискайском заливе» (Wettervorhersage Biskaya), то сначала выписываем ее напротив шифрованной строки.

Q F Z W R W I V T Y R E * S* X B F O G K U H Q B A I S E Z

W E T T E R V O R H E R * S* A G E B I S K A Y A

Видим, что буква S шифруется сама в себя. Значит, подсказку нужно сдвинуть на один символ и проверить снова. В этом случае совпадать будет сразу несколько букв - двигаем еще. Совпадает R. Двигаем еще дважды, пока не наталкиваемся на потенциально правильную подстроку.

Если бы мы имели дело с шифром подстановки, то на этом можно было бы и закончить. Но поскольку это полиалфавитный шифр, нам нужны настройки и исходные положения роторов «Энигмы». Именно их и подбирали при помощи «бомб». Для этого пары букв нужно сначала пронумеровать.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R W I V T Y R E S X B F O G K U H Q B A I S E

W E T T E R V O R H E R S A G E B I S K A Y A

А затем на основе этой таблицы составить так называемое «меню» - схему, по которой видно, какая буква исходного сообщения (то есть «подсказки») в какую букву предположительно шифруется и в какой позиции. По этой схеме и настраивается «бомба».


Каждый из барабанов может принять одно из 26 положений - по одному на каждую перебираемую букву алфавита. За каждым из барабанов - 26 контактов, которые толстыми шлейфами соединяются таким образом, чтобы машина искала настройки штекерной панели, дающие последовательные совпадения букв шифрованной строки с подсказкой.

Поскольку строение «бомбы» не учитывает устройство коммутаций внутри «Энигмы», она по ходу работы выдает несколько вариантов, которые оператор должен проверить. Часть из них не подойдет просто потому, что в «Энигме» к одному гнезду можно подключить только один штекер. Если настройки не подходят, оператор запускает машину снова, чтобы получить следующий вариант. Примерно за пятнадцать минут «бомба» переберет все варианты для выбранной позиции барабанов. Если она угадана верно, то остается подобрать настройки колец - уже без автоматики (не будем погружаться в подробности). Затем на модифицированных для совместимости с «Энигмой» английских машинах Typex шифровки переводили в чистый текст.

Таким образом, оперируя целым парком из «бомб», британцы к концу войны каждый день получали актуальные настройки еще до завтрака. Всего у немцев было около полусотни каналов, по многим из которых передавались гораздо более интересные вещи, чем прогноз погоды.

Разрешается трогать руками

В музее Блетчли-парка можно не только смотреть по сторонам, но и прикоснуться к дешифровке собственноручно. В том числе - при помощи столов-тачскринов. Каждый из них дает свое задание. В этом, например, предлагается совмещать листы Банбури (Banburismus). Это ранний метод дешифровки «Энигмы», который применялся до создания «бомб». Увы, таким способом расшифровать что-то в течение суток было невозможно, а в полночь все успехи превращались в тыкву из-за очередной смены настроек.

Муляж «дата-центра» в Hut 11

Что же стоит в домике номер 11, где раньше была «серверная», если все «бомбы» были уничтожены в прошлом веке? Честно говоря, я все же в глубине души надеялся зайти сюда и обнаружить все в том же виде, что и когда-то. Увы, нет, но зал все равно не пустует.

Здесь стоят вот такие железные конструкции с фанерными листами. На одних - фотографии «бомб» в натуральную величину, на других - цитаты из рассказов тех, кто здесь работал. Ими были в основном женщины, в том числе из WAF - женской службы ВВС Великобритании. Цитата на снимке говорит нам о том, что переключение шлейфов и присмотр за «бомбами» был вовсе не легкой задачей, а изматывающим ежедневным трудом. Кстати, между муляжами спрятана очередная серия проекций. Девушка рассказывает своей подруге о том, что понятия не имела, где ей предстоит служить, и полностью поражена происходящим в Блетчли. Что ж, я был тоже поражен необычным экспонатом!

В общей сложности я провел в Блетчли-парке пять часов. Этого едва-едва хватило, чтобы хорошенько посмотреть центральную часть и мельком - все остальное. Было настолько интересно, что я даже не заметил, как прошло время, пока ноги не начали ныть и проситься обратно - если не в гостиницу, то хотя бы в электричку.

А помимо домиков, полутемных кабинетов, восстановленных «бомб» и длинных стендов с сопроводительными текстами, было на что посмотреть. Про зал, посвященный шпионажу во время Первой мировой, я уже упомянул, был еще зал про дешифровку «Лоренца» и создание компьютера Colossus . Кстати, в музее я обнаружил и сам «Колосс», вернее ту часть, что успели построить реконструкторы.

Самых выносливых уже за территорией Блетчли-парка ждет небольшой музей компьютерной истории, где можно ознакомиться с тем, как вычислительная техника развивалась после Тьюринга. Туда я тоже заглянул, но прошел уже быстрым шагом. На BBC Micro и «Спектрумы» я уже насмотрелся в других местах - вы можете сделать это, например, на питерском фестивале Chaos Constructions. А вот живую «бомбу» где попало не встретишь.

All specialists unanimously agreed that a reading is impossible.
Admiral Kurt Fricke, Chief of Naval War Command

Энигма - роторная шифровальная машина, использовавшаяся нацистской Германией в годы Второй мировой войны. Благодаря влиянию, оказанному на ход войны, взлом Энигмы стал, возможно, самым ярким моментом в многовековой истории криптоанализа. В этом топике я бы хотел рассказать о методе взлома, использовавшимся в Блетчли-парк, а так же описать устройство самой машины.

Роторные машины

Впервые шифровальные роторные машины начали использоваться в начале 20 века. Основным компонентом таких устройств является диск (он же ротор) с 26 электрическими контактами на обоих сторонах диска. Каждый контакт соответствовал букве английского алфавита. Соединение контактов левой и правой сторон реализовывало шифр простой замены. При вращении диска контакты смещались, изменяя тем самым подстановку для каждой буквы. Один диск обеспечивал 26 различных подстановок. Это означает, что при шифровании одного и того же символа, получаемая в результате последовательность начинает повторяться через 26 шагов.
Для увеличения периода последовательности можно использовать несколько роторов, соединенных последовательно. При совершении полного оборота одного из дисков, следующий диск сдвигается на одну позицию. Это увеличивает длину последовательности до 26 n , где n - количество соединенных последовательно роторов.
В качестве примера рассмотрим следующее изображение упрощенной роторной машины:

Приведенная машина состоит из клавиатуры (для ввода символа), трех дисков, индикатора (для отображения криптотекста) и реализует шифрование 4 символов: A, B, C, D. В начальной позиции первый диск реализует подстановку: A-C; B-A; C-B; D-D. Подстановки второго и третьего дисков равны A-B; B-C; C-A; D-D и A-A; B-C; C-B; D-D соответственно.
При нажатии буквы B на клавиатуре замыкается электрическая цепь, зависящая от текущего положения роторов, и на индикаторе загорается лампочка. В приведенном выше примере буква B будет зашифрована в C. После чего первый ротор сдвинется на одну позицию и настройки машины приобретут следующий вид:

Энигма

Энигма является наиболее популярным представителем мира шифровальных роторных машин. Она использовалась германскими войсками во время второй мировой войны и считалась практически не взламываемой.
Процедура шифрования Энигмы реализована как в приведенном выше примере за исключением некоторых дополнительных штрихов.
Во-первых, число роторов в разных версиях Энигмы могло отличаться. Наиболее распространенной была Энигма с тремя роторами, но использовался так же вариант с четырьмя дисками.
Во-вторых, процесс расшифровки демонстрационной роторной машины, описанной выше, отличается от процесса шифрования. Каждый раз для расшифровки придется менять левый и правый ротор местами, что может быть не совсем удобным. Для решения этой проблемы в Энигме был добавлен еще один диск, который назывался рефлектор. В рефлекторе все контакты были соединены попарно, реализуя тем самым повторное прохождение сигнала через роторы, но уже по другому маршруту. В отличие от остальных роторов рефлектор всегда находился в фиксированном положении и не вращался.

Добавим рефлектор, реализующий замену (A-B; C-D) к нашей демонстрационной шифровальной машине. При нажатии на клавишу B сигнал проходит через роторы и поступает в рефлектор через контакт C. Здесь сигнал «отражается» и возвращается обратно, проходя через роторы в обратном порядке и по другому пути. В результате чего буква B на выходе преобразуется в D.
Обратите внимание, что если нажать клавишу D, то сигнал пойдет по той же самой цепи, преобразовывая D в B. Таким образом наличие рефлектора делало процессы шифрования и дешифрования идентичными.
Еще одно свойство Энигмы, связанное с рефлектором, заключается в невозможности шифрования какой-либо буквы в саму себя. Это свойство сыграло очень важную роль при взломе Энигмы.

Получившееся устройство уже очень похоже на настоящую Энигму. С одной незначительной оговоркой. Стойкость подобной машины упирается в секретность внутренней коммутации роторов. Если устройство роторов будет раскрыто, то взлом сводится к подбору их начальных позиций.
Так как каждый ротор может находится в одной из 26 позиций, для трех роторов получаем 26 3 =17476 вариантов. При этом сами роторы тоже могут располагаться в произвольном порядке, что увеличивает сложность в 3! раз. Т.е. пространство ключей такой машины составит 6*17576=105456. Этого явно не достаточно для того, чтобы обеспечить высокий уровень безопасности. Поэтому Энигма было оснащена еще одним дополнительным инструментом: коммутационной панелью . Соединяя на коммутационной панели буквы попарно можно было добавить еще один дополнительный шаг к шифрованию.


К примеру, предположим что на коммутационной панели буква B соединена с буквой A. Теперь при нажатии на A сперва происходит подстановка A-B, и на вход первого ротора подается буква B.
Аналогичным образом происходит расшифровка сообщения. При нажатии клавиши D роторы и рефлектор производят преобразование D-D-D-D-C-B-A-B. После чего коммутационная панель преобразует B в A.

Анализ стойкости Энигмы

Реальная Энигма отличалась от описанной демонстрационной машиной только в одном. А именно в устройстве роторов. В нашем примере ротор изменяет свое положение только при совершении полного оборота предыдущим диском. В настоящей Энигме каждый диск имел специальную выемку, которая в определенной позиции подцепляла следующий ротор и сдвигала его на одну позицию.
Расположение выемки для каждого из роторов можно было регулировать с помощью специальных внешних колец. Начальное положение колец не влияло на коммутацию роторов и на результат шифрования отдельно взятой буквы, поэтому кольца не учитываются при расчете пространства ключей Энигмы.
Итак, базовая модель Энигмы имела 3 различных ротора, пронумерованных римскими цифрами I, II, III и реализующих следующие подстановки:
Entry = ABCDEFGHIJKLMNOPQRSTUVWXYZ
I = EKMFLGDQVZNTOWYHXUSPAIBRCJ
II = AJDKSIRUXBLHWTMCQGZNPYFVOE
III = BDFHJLCPRTXVZNYEIWGAKMUSQO
При шифровании роторы можно было располагать в любой последовательности, что для трех роторов дает 6 разных комбинаций.
Помимо этого каждый ротор мог быть установлен в одной из 26 возможных стартовых позиций. Т.е. начальное положение роторов имеет всего
6*26 3 =105456 комбинаций.
Количество всех возможных соединений на коммутационной панели вычисляется по формуле n! /((n-2m)! m! 2 m), где n - количество букв алфавита, m - количество соединенных пар.
Для 26 буква английского алфавита и 10 пар это составляет 150738274937250=2 47 различных комбинаций.
Таким образом базовая версия Энигмы с тремя роторами имела солидное даже по современным меркам пространство ключей:
150738274937250*105456=15,896,255,521,782,636,000≈2 64 .
Такое огромное число вариантов внушало обманчивое чувство неуязвимости.

Криптоанализ Энигмы

Большое пространство ключей обеспечивает шифру Энигмы достаточно серьезный уровень стойкости к атакам по известному шифртексту.
Полный перебор 2 64 вариантов даже на современных компьютерах дело не простое.
Однако все меняется если применить атаку с известным открытым текстом. Для такого случая существует весьма хитроумный метод, позволяющих пренебречь настройками коммутационной панели в процессе поиска ключевой комбинации, что сводит пространство ключей Энигмы всего к 105456 комбинациям и делает весь шифр фатально уязвимым.

Метод эксплуатирует наличие в паре открытый-закрытый текст так называемых «циклов». Чтобы объяснить понятие «цикл», рассмотрим следующее открытое сообщение P и соответствующий ему криптотекст C, зашифрованный Энигмой.

P = WETTERVORHERSAGEBISKAYA
C = RWIVTYRESXBFOGKUHQBAISE
Запишем каждый символ из пары в виде таблицы:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
w e t t e r v o r h e r s a g e b i s k a y a
r w i v t y r e s x b f o g k u h q b a i s e

Обратите внимание на подстановки, реализуемые энигмой в 14, 15 и 20 позициях. На 14 шаге буква A шифруется в G. Последняя, в свою очередь, шифруется в K на 15 шаге. И затем буква K зашифровывается в A на 20 шаге, закольцовывая тем самым цепочку A-G-K-A. Такие закольцованные цепочки называются циклами. Наличие циклов позволяет разделить задачу взлома Энигмы на две простые составные части: 1) поиск стартового положения роторов и 2) поиск соединений коммутационной панели при известных установках роторов.

Мы знаем, что при шифровании в Энигме происходит несколько преобразований. Сперва сигнал проходит через коммутационную панель. Результат преобразования на коммутационной панели поступает в роторы. После чего сигнал попадает на рефлектор и возвращается через роторы на коммутационную панель, где выполняется последняя подстановка. Все эти операции можно представить математической формулой:
E i = S -1 R -1 TRS, где
S и S -1 , - преобразование на коммутационной панели на входе и выходе соответственно;
R и R -1 - преобразование в роторах на входе и выходе;
T - преобразование на рефлекторе.
Опустив коммутационную панель выразим внутреннее преобразование Энигмы через P i:
P i = R -1 TR
Теперь шифрование можно записать как:
E i = S -1 P i S

Используя формулу перепишем подстановки из примера в 14, 15 и 20 позициях.
S -1 P 14 S(A) = G или что одно и тоже P 14 S(A) = S(G).
P 15 S(G) = S(K)
P 20 S(K) = S(A)
Заменив в последнем выражении S(K) получим:
P 20 P 15 P 14 S(A) = S(A) (1), где S(A) - буква, соединенная с A на коммутационной панели.
Теперь атака сводится к тривиальному перебору всех возможных установок ротора. Для каждой комбинации роторов необходимо проверить выполнение равенства (1). Если равенство выполняется для буквы S, это означает что найдена правильная конфигурация роторов и что буква A соединена на коммутационной панели с буквой S. Поиск остальных пар сводится к по буквенной расшифровке криптотекста и сопоставлению результата с известным открытым текстом.
Следует отметить, что с вероятностью 1/26 равенство может выполняться и при неправильной установке роторов, поэтому для повышения надежности алгоритма желательно использовать несколько «циклов».
Еще один важный момент связан с тем, что атакующему может быть известна только часть зашифрованного сообщения. И в таком случае, прежде всего ему потребуется найти местоположение известного текста в полученной криптограмме. В решении этой задачи очень сильно помогает знание того факта, что Энигма никогда не шифрует букву саму в себя. Т.е. для нахождения правильного смещения нужно найти такую позицию в криптотексте при которой ни одна из букв закрытого текста не дублируется буквой открытого сообщения.

P.S.

Очень медленную, но вполне рабочую реализацию атаки на Python можно посмотреть на

История электрической роторной шифровальной машины «Энигма» начинается в 1917 году с патента , полученного голландцем Хьюго Кочем. В следующем году патент был перекуплен Артуром Шербиусом , начавшим коммерческую деятельность с продажи экземпляров машины как частным лицам, так и немецким армии и флоту . До середины 1920-х годов продажи шли плохо, в частности, из-за высокой цены .

В июне 1924 года британская криптографическая служба (Room 40) заинтересовалась устройством машины. С этой целью была закуплена партия машин у германской компании Chiffrier-maschinen AG, производившей «Энигму». Одним из условий сделки была регистрация патента в британском патентном бюро, благодаря чему криптографическая служба получила доступ к описанию криптографической схемы .

Польский этап

Первые перехваты сообщений, зашифрованных при помощи «Энигмы», относятся к 1926 году. Однако прочитать их долгое время не могли. В январе 1929 года коробка с коммерческим вариантом «Энигмы» случайно попала на варшавскую таможню. Германия попросила вернуть коробку, после чего её содержимым заинтересовались поляки. По поручению польского «Бюро шифров» машина была изучена специалистами фирмы «AVA», в том числе её руководителем криптоаналитиком Антонием Пальтхом, после чего коробку отправили в германское посольство. Изучение машины не позволило дешифровать сообщения, к тому же германские военные использовали свой, усиленный вариант «Энигмы» .

В 1928-29 годах в Польше были организованы первые математические курсы по криптографии. Слушателями были два десятка студентов-математиков со знанием немецкого языка. Трое из слушателей - Мариан Реевский , Генрих Зыгальский и Ежи Рожицкий - поступили на службу в «Бюро шифров» . Впоследствии именно они получат первые результаты по вскрытию кода «Энигмы» .

В 1931 году сотрудник шифрбюро министерства обороны Германии Ганс-Тило Шмидт , ставший уже агентом «Аше», начал передавать французской разведке вышедшие из употребления коды, которые, согласно служебным обязанностям, ему требовалось уничтожать, а также передал инструкцию по использованию военного варианта «Энигмы». Среди причин, побудивших Ганс-Тило сделать это, были и материальное вознаграждение, и обида на родную страну, не оценившую его успехи во время Первой мировой войны , и зависть к армейской карьере брата Рудольфа Шмидта . Первыми двумя документами стали «Gebrauchsanweisung für die Chiffriermaschine Enigma» и «Schlüsselanleitung für die Chiffriermaschine Enigma» . Французская и английская разведки, однако, не проявили интереса к полученным данным - возможно, считалось, что вскрыть шифр «Энигмы» невозможно. Полковник французской разведки Гюстав Бертран передал материалы польскому «Бюро шифров» и продолжал передавать им дальнейшую информацию от агента до осени 1939 года .

  1. настроек коммутационной панели; (нем. Steckerverbindungen )
  2. порядка установки роторов; (нем. Walzenlage )
  3. положений колец; (нем. Ringstellung )
  4. начальных установок роторов. (нем. Kenngruppen )

Однако оператор не должен был использовать дневной ключ для шифрования сообщений. Вместо этого оператор придумывал новый ключ из трёх букв (нем. Spruchschlüssel ) и дважды шифровал его с использованием дневного ключа. После чего настройки роторов менялись в соответствии с придуманным ключом и производилось шифрование сообщения .

Усилия Мариана сосредоточились на анализе уязвимости протокола обмена сообщениями, а именно - на повторении ключа сообщения. Из ежедневных сообщений выбирались первые шесть букв и на их основе составлялась таблица соответствия (примеры взяты из книги Сингха ):

Сообщение 1 L O K R G M
Сообщение 2 M V T X Z E
Сообщение 3 J K T M P E
Сообщение 4 D V Y P Z X
1-я буква A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
4-я буква P M R X

Если сообщений было достаточно, то таблица заполнялась полностью.

1-я буква A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
4-я буква F Q H P L W O G B M V R X U Y C Z I T N J E A S D K

Особенность полного варианта таблицы заключалась в том, что пока дневной ключ остаётся без изменений, содержимое таблицы также не меняется. И, с большой степени вероятности, наоборот. Можно было бы составить каталог таблиц… однако их количество равно 26!, что делает эту работу невозможной в обозримое время. Реевский стал пытаться выделить из таблиц некоторые шаблоны или найти некоторые структурные закономерности. И это ему удалось. Он стал рассматривать цепочки букв следующего вида :

1-я буква A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A → F → W → A
4-я буква F Q H P L W O G B M V R X U Y C Z I T N J E A S D K

В примере полной таблицы выше таких цепочек оказалось 4:

  1. A → F → W → A
  2. B → Q → Z → K → V → E → L → R → I → B
  3. C → H → G → O → Y → D → P → C
  4. J → M → X → S → T → N → U → J

Следующим открытием Мариана стало то, что хотя конкретные буквы зависели от дневной настройки «Энигмы» полностью, количество цепочек и букв в них задавалось только настройками роторов. Так как количество роторов было равно 3 (но они могли стоять в любом порядке), а начальная настройка состояла из трех букв латинского алфавита, то число вариантов было равно 3 ! ∗ 26 3 = 105456 {\displaystyle 3!*26^{3}=105456} . Это было значительно меньше чем 26!, что позволило, используя построенные (или украденные) машины «Энигма» составить каталог, содержащий все возможные цепочки. Данная работа заняла почти год, однако результатом стала возможность читать германскую переписку .

Как отмечает Сингх, именно возможность разделить задачу на две составляющих (настройки роторов и настройки коммутационной панели) позволили Реевскому справиться с данной задачей, а также помощь как математиков «Бюро шифров», так и Шмидта :

После того, как настройки роторов для дневного сообщения были восстановлены, оставалось выяснить настройки коммутационной панели. С криптографической точки зрения это был простой моноалфавитный шифр , дополнительно ограниченный лишь 6 парами замен букв. Текст даже часто не требовалось подвергать частотному криптоанализу, а всего-лишь присмотреться к строкам вроде «alliveinbelrin» (англ. arrive in Berlin с заменой R ↔ L) и другим, которые было легко восстановить «на глаз» .

В 1934 году Германия начала менять конфигурацию положения роторов каждый месяц вместо каждого квартала. В ответ на это Мариан Реевский спроектировал устройство под названием «циклометр», позволяющий быстро воссоздать каталог циклов .

15 декабря 1938 года Германия добавила 4-й и 5-й роторы, а 1 января 1939 года увеличила количество соединений коммутационной панели с 6 до 10. Всё это значительно затруднило криптоанализ «Энигмы» .

PC Bruno

Британский этап

Дальнейшая работа по взлому «Энигмы» проходила в секретном центре британской разведки «Station X», известном впоследствии как Блетчли-парк .

Кадры

Руководителем проекта был назначен ветеран военной разведки Алистер Деннистон . Работу по дешифровке возглавил коллега Деннистона по комнате № 40 , известный лингвист и криптоаналитик Альфред Нокс («Dilly» Knox). За общую организацию работы отвечал профессор-математик Гордон Уэлчман . Деннистон начал набирать штат криптоаналитиков по принципу умственных способностей: лингвистов, математиков, шахматистов, чемпионов по решению кроссвордов , египтологов и даже палеонтологов . В частности, одним из первых был принят известный шахматный мастер Стюарт Милнер-Бэрри (Stuart Milner-Barry). Среди математиков был и молодой профессор логики из Кембриджа - Алан Тьюринг .

Метод

Перехват радиосообщений противника выполняли десятки приемных станций, имевших кодовое название «Y-station». Ежедневно в Блетчли-парк поступали тысячи таких сообщений. Блетчли-парк имел в своем распоряжении точную копию «Энигмы», поэтому расшифровка сообщений сводилась к подбору установки дисков и, для более поздних моделей, - штекерного коммутатора. Сложность задачи усугублялась тем, что установки роторов менялись ежедневно, поэтому службы дешифровки работали круглосуточно в три смены .

Конструкция «Энигмы» при правильном использовании обеспечивала практически полную секретность . На практике, однако, со стороны немецких пользователей «Энигмы» зачастую допускались небрежные действия, дававшие подсказки британским аналитикам (такие подсказки на сленге английских студентов назывались cribs ). Именно на использовании и систематизации таких погрешностей и был основан метод дешифровки.

Подсказками служили любые часто повторяющиеся тексты, такие как приветствия, цифры (кодировались по произношению: «один», «два» и т. д. ). Все подсказки заносились в картотеку (Index) вместе с контекстом: почерком радиста, местом и временем передачи и т. п.

При отсутствии необходимого количества подсказок, особенно накануне крупных операций, проводились специальные мероприятия по их получению. Этот прием получил кодовое название «садоводство » (англ. gardening ). Например, перед выходом очередного полярного конвоя проводилось демонстративное минирование определённого участка моря. Если противник докладывал результаты разминирования с указанием заранее известных координат, это давало искомую подсказку.

Тьюринг

Одним из основных теоретиков Блетчли-парка был Алан Тьюринг . После изучения польских материалов Тьюринг пришёл к выводу, что использовать прежний подход с полным перебором сообщений уже не получится. Во-первых, это потребует создания более 30 машин польского типа, что во много раз превышало годовой бюджет «Station X», во-вторых, можно было ожидать, что Германия может исправить конструктивный недостаток, на котором основывался польский метод. Поэтому он разработал собственный метод, основанный на переборе последовательностей символов исходного текста.

Вскоре немцы добавили в конструкцию Энигмы коммутирующее устройство, существенно расширив этим количество вариантов кода. Возникшую для англичан задачу решил Гордон Уэлчман , предложив конструкцию «диагональной доски». В результате этой работы в августе 1940 года была построена криптоаналитическая машина Bombe . Со временем в Блетчли-Парке было установлено более 200 машин , что позволило довести темп расшифровки до двух-трёх тысяч сообщений в день .

Хотя Bombe претерпевала некоторые изменения в деталях, её общий вид оставался прежним: шкаф весом около тонны, передняя панель два на три метра и 36 групп роторов на ней, по три в каждой. Использование машины требовало специальных навыков, и сильно зависело от квалификации обслуживающего персонала - девушек-добровольцев из Women’s Royal Naval Service (англ. ) . Впоследствии, когда часть работ была перенесена в США, вместе с технологиями была направлена и часть сотрудниц .

«Живая» информация

Время от времени Германия вносила в машину конструктивные изменения или каким-либо способом усиливала криптографическую защиту. В таких случаях криптоаналитики из Блетчли-парка оказывались бессильными, и для дальнейшей работы срочно требовалось найти описание изменений или хотя бы новые экземпляры инструкций и машин «Энигма» .

Секретность

«Это моя курочка-ряба, которая несет золотые яйца, но никогда не кудахчет.»

Уинстон Черчилль о Блетчли-парке

Английское правительство делало все возможное для того, чтобы скрыть успехи в расшифровке немецких шифров как от противника, так и от руководства СССР. С этой целью все действия, основанные на данных программы «Ультра» должны были сопровождаться операциями прикрытия, маскирующими истинный источник информации . Так, для передачи сведений «Ультра» в СССР использовалась швейцарская организация Lucy, располагавшая по легенде источником в верхах немецкого руководства. Информацию, полученную от Lucy, передавал в СССР резидент советской разведки в Швейцарии Шандор Радо .

Для маскировки «Ультра» применялись фиктивные разведывательные полеты, радиоигра и т. п. мероприятия.

О существовании программы «Ультра» было известно строго ограниченному кругу лиц, число которых составляло порядка десяти человек. Необходимые сведения передавались по назначению сетью подразделений разведки, прикомандированных к штабам командующих армии и флота. Источник сведений при этом не раскрывался, что иногда приводило к недооценке британским командованием вполне надёжных сведений «Ультры» и крупным потерям (См. Гибель авианосца «Глориес»).

СССР

В числе полученной Великобританией информации были и сведения о подготовке вторжения в СССР . Несмотря на риск раскрытия источника, сведения были переданы советскому правительству . Однако Сталин не поверил в возможность нападения .

Оценки результатов

Некоторые авторы указывают, что с современной точки зрения шифр «Энигмы» был не очень надёжным . Однако в своё время его абсолютная надежность не вызывала никаких сомнений у немецких специалистов: до самого конца войны немецкое командование искало причины утечек секретной информации где угодно, но не в раскрытии «Энигмы». Именно поэтому успех британских дешифровщиков стал особенно ценным вкладом в дело победы над нацизмом.

После войны

См. также

Примечания

  1. Случались и ошибки: среди приглашенных в проект оказался биолог капитан-лейтенант Джеффри Танди - специалист по криптогамам
  2. Макс Ньюман , Том Флауэрс и другие специалисты попали в Блетчли-парк позднее в связи с работой над шифром «Танни ».
  3. Шифром «Энигмы» пользовались не только армия, авиация и флот, но и военная разведка (Abwehr), железная дорога и другие службы. Все они применяли собственные установки роторов.
  4. Важным недостатком конструкции была невозможность кодирования буквы той же самой буквой. Эта особенность «Энигмы» была широко использована при дешифровке
  5. Тюринг подметил, что цифра «один» (нем. Eins ) встречается в 90 % сообщений. На этой основе был построен особый метод дешифровки - «eins-алгоритм». В качестве crib использовалось даже приветствие Heil Hitler и грубые ругательства, что особенно забавляло многочисленный женский персонал Блетчли-парка
  6. Польская машина называлась «бомба» (польск. Bomba kryptologiczna - Криптологическая бомба). По-английски бомба - bomb . Её название, по одной из версий, происходит от названия десерта из мороженого Bombe glacée («One theory was that bomba was named after the ice cream, bombe glacee, which was being eaten when the machine was invented.» // Enigma: The Battle for the Code, By Hugh Sebag-Montefiore, 2002, ISBN 978-0-471-43721-5).
  7. Изготовлением Bombe занималась компания «British Tabulating Machines» (англ. ) ; проект машины сделал главный конструктор компании Гарольд Кин (англ. Harold Keen ).
  8. Машины и обслуживающий персонал размещались вне территории Блетчли-парка в окружающих поселках.
  9. Версия отказа от защиты Ковентри ради сохранения секретности Ultra, не соответствует действительности и основана исключительно на воспоминаниях Ф. У. Винтерботтама, - офицера RAF не имевшего доступа к подобной информации. Версия Винтерботтама неоднократно опровергалась другими мемуаристами и историками.
  10. СССР имел некоторые сведения о программе Ultra от своего агента в Блетчли-парке - Джона Кернкросса , одного из членов Кембриджской пятерки . Англичане не подозревали о роли Кернкросса до 1951 г.
  11. Ф. Уинтерботем пишет, что в дальнейшем, из соображений секретности, англичане информацией не делились. Так, по мнению Уинтерботема, о Курской операции вермахта в СССР узнали из других источников. Нужно учитывать, однако, что книга Уинтерботема вышла до снятия грифа секретности с британских архивов о дешифровке кода «Лоренц» (1975), а сам он, будучи во время войны офицером ВВС, доступа к секретным сведениям об «Энигме» не имел. Архивные же материалы однозначно свидетельствуют о передаче в Москву детального плана

По материалам диссертации «Шифровальные машины и приборы для расшифровки во время Второй мировой войны», защищенной в университете г. Хемниц (ФРГ) в 2004г.

Введение. Для широкой публики слово «Энигма» (по-гречески - загадка) является синонимом понятий «шифровальная машина» и «взлом кода», о чем позаботились фильмы про подводные лодки и аналогичные романы, имеющие мало общего с действительностью. О том, что были и другие шифровальные машины, для «взлома» которых создавались специальные машины для расшифровки, и о тех последствиях, какие это имело во Второй Мировой войне, об этом широкой публике известно мало.

И не удивительно: об этом имеется слишком мало информации в популярных изданиях. А имеющаяся там информация обычно либо недостаточна, либо недостоверна. Это тем более заслуживает сожаления, потому что взлом шифровальных кодов имел исключительно важное историческое значение для хода войны, так как союзники (по антигитлеровской коалиции) благодаря полученной таким образом информации имели существенные преимущества, они смогли компенсировать некоторые упущения первой половины войны и смогли оптимально использовать свои ресурсы во второй половине войны. По мнению англо-американских историков, если бы не взлом немецких шифровальных кодов, война длилась бы на два года дольше, потребовались бы дополнительные жертвы, также возможно, что на Германию была бы сброшена атомная бомба.

Но мы этим вопросом заниматься не будем, а ограничимся научными, техническими и организационными обстоятельствами, которые способствовали раскрытию немецких шифровальных кодов. И что особенно важно, как и почему удалось разработать машинные способы «взлома» и успешно их использовать.
Взлом кодов Энигмы и кодов других шифровальных машин обеспечил союзникам не только доступ к военно-тактической информации, но и к информации МИДа, полицейской, СС-овской и железнодорожной. Сюда же относятся сообщения стран «оси», особенно японской дипломатии, и итальянской армии. Союзники получали также информацию о внутреннем положении в Германии и у ее союзников.

Над расшифровкой кодов только в Англии трудился многотысячный коллектив секретной службы. Эту работу опекал лично премьер-министр Англии Уинстон Черчиль, который знал о важности этой работы по опыту Первой Мировой войны, когда он был Военно-морским министром правительства Великобритании. Уже в ноябре 1914 года он приказал расшифровывать все перехваченные вражеские телеграммы. Он также приказал расшифровать ранее перехваченные телеграммы, чтобы понять образ мыслей немецкого командования. Это - свидетельство его дальновидности. Самый знаменитый итог этой его деятельности - форсирование вступления США в Первую мировую войну.
Столь же дальновидным было создание английских станций прослушивания - тогда это была совершенно новая идея - особенно прослушивание радиообмена вражеских кораблей.

Уже тогда и в период между двумя мировыми войнами Черчиль приравнивал такую деятельность к новому виду оружия. Наконец, ясно было, что необходимо засекретить собственные радиопереговоры. И все это нужно было держать в тайне от врага. Есть большие сомнения, что вожди Третьего Рейха все это осознавали. В руководстве Вермахта (ОКВ) существовало отделение с небольшим число криптологов и с задачей «разработать методы раскрытия радиосообщений противника», причем речь шла о фронтовых радиоразведчиках, которым вменялось в обязанность обеспечивать фронтовых командиров тактической информацией на их участке фронта. В немецкой армии используемые шифровальные машины оценивали не криптологи (по качеству шифрования и возможностям взлома), а технические специалисты.

Союзники следили за постепенным совершенствованием немецкой шифровальной техники и тоже совершенствовали методы взлома шифровальных кодов. Факты, свидетельствовавшие об информированности союзников, немцы относили за счет предательства и шпионажа. Кроме того, в Третьем Рейха часто отсутствовала четкая подчиненность, а службы шифрования разных родов войск не только не взаимодействовали между собой, но и свои навыки скрывали от шифровальщиков других родов войск, так как «конкуренция» была в порядке вещей. Разгадать шифровальные коды союзников немцы и не пытались, так как у них для этого было мало криптологов, и те что были, работали изолированно друг от друга. Опыт же английских криптологов показал, что совместная работа большого коллектива криптологов позволила решить практически все поставленные задачи. К концу война начался постепенный переход в области шифрования от машинной работы к работе на базе компьютеров.

Шифровальные машины в военном деле были впервые применены в Германии в 1926 году. Это побудило потенциальных противников Германии включиться в развитие собственных методов шифрования и дешифровки. Например, Польша занялась этим вопросом, причем сначала ей пришлось разрабатывать теоретические основы машинной криптологии, поскольку «ручные» методы для этого не годились. Будущая война потребовала бы ежедневно расшифровывать тысячи радиосообщений. Именно польские специалисты в 1930 году первыми начали работы по машинному криптологическому анализу. После начала войны и оккупации Польши и Франции эти работы продолжили английские специалисты. Особенно важными здесь были теоретические работы математика А.Тюринга. Начиная с 1942 года раскрытие шифровальных кодов приобрело чрезвычайно важное значение, так как немецкое командование для передачи своих распоряжений все чаще использовало радиосвязь. Нужно было разработать совершенно новые способы криптологического анализа для дешифровальных машин.

Историческая справка.
Первым применил шифрование текста Юлий Цезарь. В 9-м веке арабский ученый Аль-Кинди впервые рассмотрел задачу дешифровки текста. Разработке методов шифрования были посвящены работы итальянских математиков 15-16 веков. Первое механическое устройство придумал в 1786 году шведский дипломат, такой прибор был и в распоряжении американского президента Джефферсона в 1795 году. Только в 1922 году этот прибор был улучшен криптологом американской армии Мауборном. Он использовался для шифровки тактических сообщений вплоть до начала Второй Мировой войны. Патенты на улучшение удобства пользования (но не на надежность шифровки) выдавались американским Бюро патентов, начиная с 1915 года. Все это предполагалось использовать для шифровки бизнес-переписки. Несмотря на многочисленные усовершенствования приборов, ясно было, что надежной является шифровка только коротких текстов.

В конце первой мировой войны и в первые годы после нее возникает несколько изобретений, созданных любителями, для которых это было своеобразным хобби. Назовем имена двух из них: Хеберн (Hebern) и Вернам (Vernam), оба американцы, ни один из них о науке криптологии, скорее всего, вообще не слышал. Последний из двух даже реализовал некоторые операции Булевой логики, о которой тогда вообще мало кто знал, кроме профессиональных математиков. Дальнейшим усовершенствованием этих шифровальных машин занялись профессиональные криптологи, это позволило усилить их защищенность от взлома.

С 1919г. начинают патентовать свои разработки и немецкие конструкторы, одним из первых был будущий изобретатель Энигмы Артур Шербиус (1878 - 1929). Были разработаны четыре варианта близких по конструкции машин, но коммерческого интереса к ним проявлено не было, вероятно потому, что машины были дорогими и сложными в обслуживании. Ни ВМФ, ни МИД не приняли предложений изобретателя, поэтому он попробовал предложить свою шифровальную машину в гражданские секторы экономики. В армии и МИДе продолжали пользоваться шифрованием по книгам.

Артур Шербиус перешел работать в фирму, купившую его патент на шифровальную машину. Эта фирма продолжала совершенствовать Энигму и после смерти ее автора. Во втором варианте (Enigma B) машина представляла собой модифицированную электрическую пишущую машинку, с одной стороны ее было устроено шифровальное устройство в виде 4 сменных роторов. Фирма широко выставляла машину и рекламировала ее как не поддающуюся взлому. Ею заинтересовались офицеры Рейхсвера. Дело в том, что в 1923 году вышли воспоминания Черчилля, в которых он рассказал о своих криптологических успехах. Это вызвало шок у руководства немецкой армии. Немецкие офицеры узнали, что большая часть их военных и дипломатических сообщений была расшифрована британскими и французскими экспертами! И что этот успех во много определялся слабостью дилетантской шифровки, изобретенной любителями-шифровальщиками, так как военной немецкой криптологии просто не существовало. Естественно, они начали искать надежные способы шифрования для военных сообщений. Поэтому у них возник интерес к Энигме.

Энигма имела несколько модификаций: А,В,С и т.д. Модификация С могла выполнять как шифровку, так и дешифровку сообщений; она не требовала сложного обслуживания. Но и ее продукция еще не отличалась стойкостью к взлому, потому что создателей не консультировали профессиональные криптологи. Она использовалась в немецком военно-морском флоте с 1926 по 1934 гг. Следующая модификация Энигма D имела и коммерческий успех. Впоследствии, с1940 г. ее использовали на железнодорожном транспорте в оккупированных районах Восточной Европы.
В 1934г. в немецком морском флоте начали использовать очередную модификацию Энигма I.

Любопытно, что расшифровкой немецких радиосообщений, засекреченных этой машиной, пытались заниматься польские криптологи, причем результаты этой работы становились каким-то образом известны немецкой разведке. Поначалу поляки добились успеха, но «наблюдавшая» за ними немецкая разведка сообщила об этом своим криптологам, и те поменяли шифры. Когда выяснилось, что польские криптологи не смогли взломать зашифрованные Энигмой -1 сообщения, эту машину начали применять и сухопутные войска - Вермахт. После некоторого совершенствования именно эта шифровальная машина стала основной во Второй Мировой войне. С 1942 года подводный флот Германии принял «на вооружение» модификацию Энигма - 4.

Постепенно к июлю 1944 г. контроль над шифровальным делом переходит из рук Вермахта под крышу СС, главную роль здесь играла конкуренция между этими родами вооруженных сил. С первых же дней ВМВ армии США, Швеции, Финляндии, Норвегии, Италии и др. стран насыщаются шифровальными машинами. В Германии конструкции машин постоянно совершенствуются. Основная трудность при этом была вызвана невозможностью выяснить, удается ли противнику расшифровывать тексты, зашифрованные данной машиной. Энигма разных модификаций была внедрена на уровнях выше дивизии, она продолжала выпускаться и после войны (модель «Schlüsselkasten 43») в г. Хемнице: в октябре 1945г. было выпущено 1 000 штук, в январе 1946г. - уже 10 000 штук!

Телеграф, историческая справка.
Появление электрического тока вызвало бурное развитие телеграфии, которое не случайно происходило в 19-м веке параллельно с индустриализацией. Движущей силой являлись железные дороги, которые использовали телеграф для нужд железнодорожного движения, для чего были развиты всевозможные приборы типа указателей. В 1836 году появился прибор Steinhel`я, а в 1840 его развил Сэмюель Морзе (Samuel MORSE). Дальнейшие улучшения свелись к печатающему телеграфу Сименса и Гальске (Siemens & Halske, 1850), который превращал принятые электрические импульсы в читаемый шрифт. А изобретенное в 1855г. Худжесом (Hughes) печатающее колесо после ряда усовершенствований служило еще и в 20-м веке.

Следующее важное изобретение для ускорения переноса информации - было создано в 1867 году Витстоуном (Wheatstone): перфолента с кодом Морзе, которую прибор ощупывал механически. Дальнейшему развитию телеграфии препятствовало недостаточное использование пропускной способности проводов. Первую попытку сделал Мейер (B.Meyer) в 1871 году, но она не удалась, потому что этому препятствовали различная длина и количество импульсов в буквах Морзе. Но в 1874 году французскому инженеру Эмилю Бодо (Emile Baudot) удалось решить эту проблему. Это решение стало стандартом на следующие 100 лет. Метод Бодо имел две важные особенности. Во-первых, он стал первым шагом на пути к использованию двоичного исчисления. И во-вторых, это была первая надежная система многоканальной передачи данных.

Дальнейшее развитие телеграфии упиралось в необходимость доставки телеграмм с помощью почтальонов. Требовалась другая организационная система, которая бы включала: прибор в каждом доме, обслуживание его специальным персоналом, получение телеграмм без помощи персонала, постоянное включение в линию, выдача текстов постранично. Такое устройство имело бы виды на успех только в США. В Европе до 1929 года почтовая монополия препятствовала появлению любого частного устройства для передачи сообщений, они должны были стоять только на почте.

Первый шаг в этом направлении сделал в 1901 году австралиец Дональд Муррей (Donald Murray). Он, в частности, модифицировал код Бодо. Эта модификация была до 1931 года стандартом. Коммерческого успеха он не имел, так как патентовать свое изобретение в США не решился. В США конкурировали между собой два американских изобретателя: Говард Крум (Howard Krum) и Клейншмидт (E.E.Kleinschmidt). Впоследствии они объединились в одну фирму в Чикаго, которая начала в 1024 году выпускать аппаратуру, пользовавшуюся коммерческим успехом. Несколько их машин импортировала немецкая фирма Лоренц, установила их в почтамтах и добилась лицензии на их производство в Германии. С1929 года почтовая монополия в Германии была отменена, и частные лица получили доступ к телеграфным каналам. Введение в 1931 г. международных стандартов на телеграфные каналы позволило организовать телеграфную связь со всем миром. Такие же аппараты стала производить с 1927 года фирма Сименс и Гальске.

Объединить телеграф с шифровальной машиной впервые удалось 27-летнему американцу Гильберту Вернаму (Gilbert Vernam), работнику фирмы АТТ. В 1918г. он подал заявку на патент, в котором эмпирически использовал булеву алгебру (о которой он, между прочим, не имел понятия и которой тогда занимались несколько математиков во всем мире).
Большой вклад в криптологию внес американский офицер Вильям Фридман, он сделал американские шифровальные машины практически неподдающимися взлому.

Когда в Германии появились телеграфные аппараты Сименса и Гальске, ими заинтересовался военно-морской флот Германии. Но его руководство все еще находилось под впечатлением о том, что англичане во время первой мировой войны разгадали германские коды и читали их сообщения. Поэтому они потребовали соединить телеграфный аппарат с шифровальной машиной. Это было тогда совершенно новой идеей, потому что шифрование в Германии производилось вручную и только потом зашифрованные тексты передавались.

В США этому требованию удовлетворяли аппараты Вернама. В Германии за эту работу взялась фирма Сименс и Гальске. Первый открытый патент по этой теме они подали в июле 1930г. К 1932г. был создан работоспособный аппарат, который вначале свободно продавался, но с 1934г. был засекречен. С 1936г. этими приборами стали пользоваться и в авиации, а с 1941г. - и сухопутные войска. С 1942г. началась машинная шифровка радиосообщений.

Немцы продолжали совершенствовать различные модели шифровальных машин, но на первое место они ставили усовершенствование механической части, относясь к криптологии по-дилетантски, фирмы-производители не привлекали для консультаций профессиональных криптологов. Большое значение для всей этой проблематики имели работы американского математика Клода Шеннона который начитная с 1942г. работал в лабораториях Белла и проводил там секретные математические исследования. Еще до войны он был известен доказательством аналогии между булевой алгеброй и релейными соединениями в телефонии. Именно он открыл «бит» как единицу информации. После войны, в 1948г. Шеннон написал свой основной труд «Математическая теория коммуникаций». После этого он стал профессором математики в университете.

Шеннон первый начал рассматривать математическую модель криптологии и развивал анализ зашифрованных текстов информационно-теоретическими методами. Фундаментальный вопрос его теории звучит так: «Сколько информации содержит зашифрованный текст по сравнению с открытым?» В 1949году он опубликовал труд «Теория коммуникаций секретных систем», в которой отвечал на этот вопрос. Проведенный там анализ был первым и единственным для количественной оценки надежности метода шифрования. Проведенный после войны анализ показал, что ни немецкие, ни японские шифровальные машины не относятся к тем, которые невозможно взломать. Кроме того, существуют другие источники информации (например, разведка), которые значительно упрощают задачу дешифровки.

Положение Англии заставляло ее обмениваться с США длинными зашифрованными текстами, именно большая длина делала возможной их дешифровку. В особом отделе британской тайной службы М 16 был разработан метод, повышавший степень засекреченности сообщения - ROCKEX. Американский метод шифрования для министерства иностранных дел был немецкими специалистами взломан и соответствующие сообщения были дешифрованы. Узнав об этом, США в 1944г. заменили несовершенную систему на более надежную. Примерно в то же время немецкий вермахт, флот и МИД тоже поменяли шифровальную технику на вновь разработанную. Недостаточной надежностью отличались и советские методы шифрования, из-за чего они были американскими службами взломаны и многие советские разведчики, занимавшиеся шпионажем американской атомной бомбы, были выявлены (операция Venona - breaking).

Взлом.
Теперь расскажем о ВЗЛОМЕ англичанами немецких шифровальных машин, то есть машинном разгадывании способа шифрования текстов в них. . Эта работа получила английское название ULTRA. Немашинные методы дешифровки были слишком трудоемкими и в условиях войны неприемлемыми. Как же были устроены английские машины для дешифровки, без которых союзники не могли бы добиться преимущества перед немецкими шифровальщиками? В какой информации и текстовом материале они нуждались? И не было ли здесь ошибки немцев, и если была, то почему она произошла?

Сначала научно-технические основы.
Сначала была проведена предварительная научная работа, так как нужно было, прежде всего, криптологически и математически проанализировать алгоритмы. Это было возможно, потому что шифровки широко использовались немецким вермахтом. Для такого анализа были необходимы не только зашифрованные тексты, полученные путем прослушивания, но и открытые тексты, полученные путем шпионажа или кражи. Кроме того, нужны были разные тексты, зашифрованные одним и тем же способом. Одновременно проводился лингвистический анализ языка военных и дипломатов. Имея длинные тексты, стало возможным математически установить алгоритм даже для незнакомой шифровальной машины. Потом удавалось реконструировать и машину.

Для этой работы англичане объединили примерно 10 000 человек, в том числе математиков, инженеров, лингвистов, переводчиков, военных экспертов, а также других сотрудников для сортировки данных, их проверки и архивирования, для обслуживания машин. Это объединение носило название ВР(Bletchley Park - Блетчли парк), оно было под контролем лично Черчилля. Полученная информация оказалась в руках союзников могучим оружием.

Как же проходило овладение англичанами вермахтовской Энигмой? Первой занялась расшифровкой немецких кодов Польша. После Первой мировой войны она находилась в постоянной военной опасности со стороны обеих своих соседей - Германии и СССР, которые мечтали вернуть себе утраченные и перешедшие к Польше земли. Чтобы не оказаться перед неожиданностями, поляки записывали радиосообщения и занимались их расшифровкой. Они были сильно встревожены тем, что после введения в феврале 1926г. в немецком ВМФ Энигмы С, а также после ее введения в сухопутных войсках в июле 1928г. им не удавалось расшифровывать зашифрованные этой машиной сообщения.

Тогда отдел BS4 польского Генштаба предположил, что у немцев появилась машинная шифровка, тем более, что ранние коммерческие варианты Энигмы были им известны. Польская разведка подтвердила, что в Вермахте с 1 июня 1930г. используется Энигма 1. Военным экспертам Польши не удалось расшифровать немецкие сообщения. Даже получив через свою агентуру документы на Энигму, они не смогли добиться успеха. Они пришли к заключению, что недостает научных знаний. Тогда они поручили трем математикам, один из которых учился в Геттингене, создать систему анализа. Все трое прошли дополнительную подготовку в университете г. Познань и свободно говорили по-немецки. Им удалось воспроизвести устройство Энигмы и создать в Варшаве ее копию. Отметим выдающиеся заслуги в этом одного из них, польского математика М.Реевского (1905 - 1980). Хотя Вермахт все время совершенствовал шифровку своих сообщений, польским специалистам удавалось вплоть до 1 января 1939г. их расшифровывать. После этого поляки начали сотрудничать с союзниками, которым они до того ничего не сообщали. Такое сотрудничество ввиду очевидной военной опасности и без того было целесообразным. 25 июля 1939г. они передали английским и французским представителям всю им известную информацию. 16 августа того же года польский «подарок» достиг Англии, и английские эксперты из только что созданного центра расшифровки ВР начали с ним работать.

Британские криптологи после Первой мировой войны были сокращены, они оставались только под крышей Министерства иностранных дел. Во время войны в Испании немцы использовали Энигму D, и остававшиеся на службе английские криптологи под руководством выдающегося специалиста-филолога Альфреда Диллвина (Alfred Dillwyn, 1885-1943) продолжали работу по расшифровке немецких сообщений. Но чисто математических методов было недостаточно. К этому времени в конце 1938г. среди посетителей английских курсов для подготовки шифровальщиков оказался математик из Кембриджа Алан Тюринг (Alan Turing). Он принял участие в атаках на Энигму 1. Им была создана модель анализа, известная как «машина Тюринга», которая позволила утверждать, что алгоритм расшифровки обязательно существует, оставалось только его открыть!

Тюринга включили в состав ВР как военнообязанного. К 1 мая 1940г. он добился серьезных успехов: он воспользовался тем, что ежедневно в 6 часов утра немецкая метеослужба передавала зашифрованный прогноз погоды. Ясно, что в нем обязательно содержалось слово «погода» (Wetter), и что строгие правила немецкой грамматики предопределяли его точное положение в предложении. Это позволило ему, в конечном счете, прийти к решению проблемы взлома Энигмы, причем он создал для этого электромеханическое устройство. Идея возникла у него в начале 1940г., а в мае того же года с помощью группы инженеров такое устройство было создано. Задача расшифровки облегчалась тем, что язык немецких радиосообщений был простым, выражения и отдельные слова часто повторялись. Немецкие офицеры не владели основами криптологии, считая ее несущественной.

Английские военные и особенно лично Черчиль требовали постоянного внимания к расшифровке сообщений. Начиная с лета 1940г. англичане расшифровывали все сообщения, зашифрованные с помощью Энигмы. Тем не менее, английские специалисты непрерывно занимались совершенствованием дешифровальной техники. К концу войны английские дешифраторы имели на своем вооружении 211 круглосуточно работающих дешифрирующих устройств. Их обслуживали 265 механиков, а для дежурства были привлечены 1675 женщин. Работу создателей этих машин оценили много лет спустя, когда попытались воссоздать одну из них: из-за отсутствия на тот момент необходимых кадров, работа по воссозданию известной машины продолжалась несколько лет и осталась неоконченной!

Созданная тогда Дюрингом инструкция по созданию дешифрирующих устройств находилась под запретом до 1996 года… Среди средств дешифровки был метод «принудительной» информации: например, английские самолеты разрушали пристань в порту Калле, заведомо зная, что последует сообщение немецких служб об этом с набором заранее известных англичанам слов! Кроме того, немецкие службы передавали это сообщение много раз, каждый раз кодируя его разными шифрами, но слово в слово…

Наконец, важнейшим фронтом для Англии была подводная война, где немцы использовали новую модификацию Энигма М3. Английский флот смог изъять такую машину с захваченной им немецкой подводной лодки. С 1 февраля 1942 года ВМФ Германии перешел на пользование моделью М4. Но некоторые немецкие сообщения, зашифрованные по-старому, по ошибке содержали информацию об особенностях конструкции этой новой машины. Это сильно облегчило задачу команде Тюринга. Уже в декабре 1942г. была взломана Энигма М4. 13 декабря 1942 году английское Адмиралтейство получило точные данные о местоположении 12 немецких подводных лодок в Атлантике…

По мнению Тюринга, для ускорения дешифровки необходимо было переходить к использованию электроники, так как электромеханические релейные устройства эту процедуру выполняли недостаточно быстро. 7 ноября 1942 года Тюринг отправился в США, где вместе с командой из лабораторий Белла создал аппарат для сверхсекретных переговоров между Черчиллем и Рузвельтом. Одновременно под его руководством были усовершенствованы американские дешифровальные машины, так что Энигма М4 была взломана окончательно и до конца войны давала англичанам и американцам исчерпывающую разведывательную информацию. Только в ноябре 1944 года у немецкого командования возникли сомнения в надежности своей шифровальной техники, однако ни к каким мерам это не привело…

(Примечание переводчика: так как начиная с 1943 года во главе английской контрразведки стоял советский разведчик Ким Филби, то вся информация сразу же поступала в СССР! Часть такой информации передавалась Советскому Союзу и официально через английское бюро в Москве, а также полуофициально через советского резидента в Швейцарии Александра Радо.)

Chiffriermaschinen und Entzifferungsgeräte
im Zweiten Weltkrieg:
Technikgeschichte und informatikhistorische Aspekte
Von der Philosophischen Fakultät der Technischen Universität Chemnitz genehmigte
Dissertation
zur Erlangung des akademischen Grades doctor philosophiae (Dr.phil.)
von Dipl.-Ing.Michael Pröse

Загрузка...
Top