Неравенство двумя переменными как решать. Уравнения и неравенства с двумя переменными. Что такое неравенства с переменными

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Уравнения и неравенства с двумя переменными

Рассмотрим в общем виде уравнение и неравенство с двумя переменными.

Уравнение с двумя переменными;

Неравенство с двумя переменными, знак неравенства может быть любым;

Здесь х и у - переменные, р - выражение, от них зависящее

Пара чисел () называется частным решением такого уравнения или неравенства, если при подстановке этой пары в выражение получаем верное уравнение или неравенство соответственно.

Задача состоит в том, чтобы найти или изобразить на плоскости множество всех решений. Можно перефразировать данную задачу - найти геометрическое место точек (ГМТ), построить график уравнения или неравенства.

Пример 1 - решить уравнение и неравенство:

Иначе говоря, задача подразумевает найти ГМТ.

Рассмотрим решение уравнения. В данном случае значение переменной х может быть любым, в связи с этим имеем:

Очевидно, что решением уравнения является множество точек, образующих прямую

Рис. 1. График уравнения, пример 1

Решениями заданного уравнения являются, в частности, точки (-1;0), (0; 1), (х 0 , х 0 +1)

Решением заданного неравенства является полуплоскость, расположенная над прямой , включая саму прямую (см. рисунок 1). Действительно, если взять любую точку х 0 на прямой, то имеем равенство . Если же взять точку в полуплоскости над прямой, имеем . Если мы возьмем точку в полуплоскости под прямой, то она не удовлетворит нашему неравенству: .

Теперь рассмотрим задачу с окружностью и кругом.

Пример 2 - решить уравнение и неравенство:

Мы знаем, что заданное уравнение - это уравнение окружности с центром в начале координат и радиусом 1.

Рис. 2. Иллюстрация к примеру 2

В произвольной точке х 0 уравнение имеет два решения: (х 0 ; у 0) и (х 0 ; -у 0).

Решением заданного неравенства является множество точек, расположенных внутри окружности, не учитывая саму окружность (см. рисунок 2).

Рассмотрим уравнение с модулями.

Пример 3 - решить уравнение:

В данном случае можно было бы раскрывать модули, но мы рассмотрим специфику уравнения. Несложно заметить, что график данного уравнения симметричен относительно обеих осей. Тогда если точка (х 0 ; у 0) является решением, то и точка (х 0 ; -у 0) - также решение, точки (-х 0 ; у 0) и (-х 0 ; -у 0) также являются решением.

Таким образом, достаточно найти решение там, где обе переменные неотрицательны, и взять симметрию относительно осей:

Рис. 3. Иллюстрация к примеру 3

Итак, как мы видим, решением уравнения является квадрат.

Рассмотрим так называемый метод областей на конкретном примере.

Пример 4 - изобразить множество решений неравенства:

Согласно методу областей, первым делом рассматриваем функцию, стоящую в левой части, если справа ноль. Это функция от двух переменных:

Аналогично методу интервалов, временно отходим от неравенства и изучаем особенности и свойства составленной функции.

ОДЗ: , значит, ось х выкалывается.

Теперь укажем, что функция равна нулю, когда числитель дроби равен нулю, имеем:

Строим график функции.

Рис. 4. График функции , учитывая ОДЗ

Теперь рассмотрим области знакопостоянства функции, они образованы прямой и ломаной . внутри ломаной находится область D 1 . Между отрезком ломаной и прямой - область D 2 , ниже прямой - область D 3 , между отрезком ломаной и прямой - область D 4

В каждой из выбранных областей функция сохраняет знак, значит достаточно в каждой области проверить произвольную пробную точку.

В области возьмем точку (0;1). Имеем:

В области возьмем точку (10;1). Имеем:

Так, вся область отрицательна и не удовлетворяет заданному неравенству.

В области возьмем точку (0;-5). Имеем:

Так, вся область положительна и удовлетворяет заданному неравенству.

, а тем более системы неравенств с двумя переменными , представляется достаточно сложной задачей. Однако есть простой алгоритм, который помогает легко и без особых усилий решать на первый взгляд очень сложные задачи такого рода. Попробуем в нем разобраться.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

  1. Строим график функции y = f(x), который разбивает плоскость на две области.
  2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.
  3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. А теперь рассмотрим несколько задач на эту тему.

Задача 1.

Какое множество точек задается неравенством x · y ≤ 4?

Решение.

1) Строим график уравнения x · y = 4. Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x. Получим: y = 4/x. Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2). Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции y=4/x, рисуем сплошной линией.

Закрасим множество точек, которое задает исходное неравенство, желтым цветом (рис. 1).

Задача 2.

Изобразить область, заданную на координатной плоскости системой

Решение.

Строим для начала графики следующих функций(рис. 2):

y = x 2 + 2 – парабола,

y + x = 1 – прямая

x 2 + y 2 = 9 – окружность.

Теперь разбираемся с каждым неравенством в отдельности.

1) y > x 2 + 2.

Берем точку (0; 5), которая лежит выше графика функции. Проверяем неравенство: 5 > 0 2 + 2 – верно.

Следовательно, все точки, лежащие выше данной параболы y = x 2 + 2, удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

2) y + x > 1.

Берем точку (0; 3), которая лежит выше графика функции. Проверяем неравенство: 3 + 0 > 1 – верно.

Следовательно, все точки, лежащие выше прямой y + x = 1, удовлетворяют второму неравенству системы. Закрасим их зеленой штриховкой.

3) x 2 + y 2 ≤ 9.

Берем точку (0; -4), которая лежит вне окружности x 2 + y 2 = 9. Проверяем неравенство: 0 2 + (-4) 2 ≤ 9 – неверно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 9, не удовлетворяют третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности x 2 + y 2 = 9, удовлетворяют третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку (рис. 3).

Искомая область – это область, где все три раскрашенных области пересекаются друг с другом (рис. 4).

Вопросы к конспектам

Напишите неравенство, решением которого является окружность и точки внутри окружности:

Найдите точки, являющиеся решением неравенства :
1) (6;10)
2) (-12;0)
3) (8;9)
4) (9;7)
5) (-12;12)

1. Неравенства с двумя переменными. Способы решения системы двух неравенств с двумя переменными: аналитический способ и графический способ.

2. Системы двух неравенств с двумя переменными: запись результата решения.

3. Совокупности неравенств с двумя переменными.

НЕРАВЕНСТВА И СИСТЕМЫ НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕН­НЫМИ. Предикат вида f₁(х, у)>< f 2 (х, у), хÎХ, уÎ У, где f₁(х, у) и f 2 (х, у) - выраже­ния с переменными х и у, определенные на множестве ХхУ называется неравенст­вом с двумя переменными (с двумя неизвестными) х и у. Ясно, что любое нера­венство вида с двумя переменными можно записать в виде f(х, у) > 0, хÎХ, уÎ У. Решением неравенства с двумя переменными называется пара значений пере­менных, обращающая неравенство в верное числовое неравенство. Известно, что пара действительных чисел (х, у) однозначно определяет точку координатной плос­кости. Это дает возможность изобразить решения неравенства или системы нера­венств с двумя переменными геометрически, в виде некоторого множества точек коорди­натной плоскости. Если уравнение.

f(х, у) = 0 определяет некоторую линию на координат­ной плоскости, то множество точек плоско­сти, не лежащих на этой линии, состоит из конечного числа областей С₁, С 2 , ..., С п (рис. 17.8). В каждой из областей С, функция f(х, у) отлична от нуля, т.к. точки, в которых f(х, у) = 0 принадлежат границам этих областей.

Решение. Преобразуем неравенство к виду х > у 2 + 2у - 3. Построим на координат­ной плоскости параболу х = у 2 + 2у - 3. Она разобьет плоскость на две области G₁ и G 2 (рис. 17.9). Так как абсцисса любой точки, лежащей правее параболы х = у 2 + 2у - 3, больше, чем абсцисса точки, имеющей ту же ординату, но лежащей на параболе, и т.к. неравенство х>у г + 2у -3 нестрогое, то геометрическим изображением решений данно­го неравенства будет множество точек плоскости, лежащих на параболе х = у 2 + 2у - 3 и правее нее (рис. 17.9).

Рис. 17.9

Рис. 17.10

Пример 17.15. Изобразите на координатной плоскости множество решений систе­мы неравенств

у > 0,

ху > 5,

х + у <6.

Решение. Геометрическим изображением решения системы неравенств х > 0, у > 0 является множество точек первого координатного угла. Геометрическим изображением решений неравенства х + у < 6 или у < 6 - х является множество точек, лежащих ниже прямой и на самой прямой, служащей графиком функции у = 6 - х. Геометрическим изображением решений неравенства ху > 5 или, поскольку х > 0 неравенства у > 5/х является множество точек, лежащих выше ветви гиперболы, служащей графиком функ­ции у = 5/х. В итоге получаем множество точек координатной плоскости, лежащих в первом координатном углу ниже прямой, служащей графиком функции у = 6 - х, и выше ветви гиперболы, служащей графиком функции у = 5х (рис. 17.10).



Глава III. НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ

Видеоурок «Системы неравенств с двумя переменными» содержит наглядный учебный материал по данной теме. В урок включено рассмотрение понятия о решении системы неравенств с двумя переменными, примеров решения подобных систем графическим способом. Задача данного видеоурока - формировать умение учеников решать системы неравенств с двумя переменными графическим способом, облегчить понимание процесса поиска решений таких систем и запоминания метода решения.

Каждое описание решения сопровождается рисунками, которые отображают решение задачи на координатной плоскости. На таких рисунках наглядно показаны особенности построения графиков и расположения точек, соответствующих решению. Все важные детали и понятия выделены при помощи цвета. Таким образом, видеоурок является удобным инструментом для решения задач учителя на уроке, освобождает учителя от подачи стандартного блока материала для проведения индивидуальной работы с учениками.

Видеоурок начинается с представления темы и рассмотрения примера поиска решений системы, состоящей из неравенств x<=y 2 и у<х+3. Примером точки, координаты которой удовлетворяют условиям обеих неравенств, является (1;3). Отмечается, что, так как данная пара значений является решением обоих неравенств, то она является одним из множества решений. А все множество решений будет охватывать пересечение множеств, которые являются решениями каждого из неравенств. Данный вывод выделен в рамку для запоминания и указания на его важность. Далее указывается, что множество решений на координатной плоскости представляет собой множество точек, которые являются общими для множеств, представляющих решения каждого из неравенств.

Понимание сделанных выводов о решении системы неравенств закрепляется рассмотрением примеров. Первым рассматривается решение системы неравенств х 2 +у 2 <=9 и x+y>=2. Очевидно, что решения первого неравенства на координатной плоскости включают окружность х 2 +у 2 =9 и область внутри нее. Эта область на рисунке заполняется горизонтальной штриховкой. Множество решений неравенства x+y>=2 включает прямую x+y=2 и полуплоскость, расположенную выше. Данная область также обозначается на плоскости штрихами другого направления. Теперь можно определить пересечение двух множеств решений на рисунке. Оно заключено в сегменте круга х 2 +у 2 <=9, который покрыт штриховкой полуплоскости x+y>=2.

Далее разбирается решение системы линейных неравенств y>=x-3 и y>=-2x+4. На рисунке рядом с условием задания строится координатная плоскость. На ней строится прямая, соответствующая решениям уравнения y=x-3. Областью решения неравенства y>=x-3 будет область, расположенная над данной прямой. Она заштриховывается. Множество решений второго неравенства располагается над прямой y=-2x+4. Данная прямая также строится на той же координатной плоскости и область решений штрихуется. Пересечением двух множеств является угол, построенный двумя прямыми, вместе с его внутренней областью. Область решений системы неравенств заполнена двойной штриховкой.

При рассмотрении третьего примера описан случай, когда графиками уравнений, соответствующих неравенствам системы, являются параллельные прямые. Решить необходимо систему неравенств y<=3x+1 и y>=3x-2. На координатной плоскости строится прямая, соответствующая уравнению y=3x+1. Область значений, соответствующих решениям неравенства y<=3x+1, лежит ниже данной прямой. Множество решений второго неравенства лежит выше прямой y=3x-2. При построении отмечается, что данные прямые параллельны. Область, являющаяся пересечением двух множеств решений, представляет собой полосу между данными прямыми.

Видеоурок «Системы неравенств с двумя переменными» может применяться в качестве наглядного пособия на уроке в школе или заменить объяснение учителя при самостоятельном изучении материала. Подробное понятное объяснение решения систем неравенств на координатной плоскости может помочь подать материал при дистанционном обучении.

Неравенства, содержащие переменную, занимают основную долю в общем объеме изучения темы «Неравенства» школьной программы математики и алгебры. Данная статья содержит базовый материал: определение понятия неравенства с переменными и их решений, способ записи решений неравенств. Также для наглядности приведем решение практических задач.

Определение неравенств с переменными

Числовые неравенства мы разобрали в соответствующей статье, выяснив что числовыми неравенствами являются два числовых выражения, между которыми располагается какой-либо из знаков неравенства. Заменив хотя бы одно из числовых выражений выражением с переменной, мы получим неравенство с переменными. Такое определение дано по виду записи подобных неравенств. Выделяют неравенства с одной, двумя, тремя и большим количеством переменных по числу переменных, использующихся в записи неравенства.

Неравенства с одной переменной

Определение 1

Неравенство с одной переменной – это неравенство, в записи которого используется одна переменная.

К примеру, k < 7 – неравенство с одной переменной k ; 8 ≥ d 2 – 3 – неравенство с одной переменной d . При этом возможно, что переменная будет участвовать в записи несколько раз, например:

((2 · x - 5 · t 2) · (t - 1) < 1 t или t - 1 + 4 ≥ 1 t - t 3 t + 3

Неравенства с двумя переменными

Определение 2

Неравенство с двумя переменными – этонеравенство, в записи которого используются две неодинаковые переменные.

Например, m 3 + 1 5 · n 2 > 13 – неравенство с двумя переменными m и n ;

(f + 2 · g) 3 7 + 3 < 7 - f f 2 + 1 – неравенство с двумя переменными f и g .

По записи неравенства с двумя переменными схожи с неравенствами с параметром и одной переменной. Но тогда, как правило, в условиях всегда указывается, какие буквы служат обозначением параметров, поэтому вопрос о том, сколько переменных в заданном неравенстве, обычно не возникает.

Неравенства с тремя или больше переменными

Определение 3

Неравенства с тремя, четырьмя и т.д. переменными – это неравенства, в записи которых используются три, четыре и т.д. переменных.

В школьной программе подобные неравенства встречаются редко, но тем не менее существуют. Например, шар, радиус которого равен 2 и центр которого совпадает с началом координат, возможно определить неравенством с тремя переменными: x 2 + y 2 + z 2 ≤ 4 .

Решения неравенства: частное, общее и простое решение

Определение 4

Решение неравенства с одной переменной – такое значение переменной, которое обращает исходное неравенство в верное числовое неравенство.

В качестве примера возьмем простое неравенство вида y > 9 . Пусть y = 13 . Подставим это значение в исходное неравенство и получим числовое неравенство 13 > 9 . Оно является верным, а значит 13 является решением исходного неравенства y > 9 . А вот число y = 5 не станет решением данного неравенства, поскольку, подставив такое значение переменной, мы получим неверное числовое неравенство: 5 > 9 .

Логичным следствием является вопрос о возможном количестве решений конкретного неравенства. Отметим, что неравенство с одной переменной может не иметь решений, иметь конечное количество решений или иметь бесконечно много решений. Мы рассмотрим это утверждение, имеющее большую значимость в практике, более детально в изучении самого процесса нахождения решений неравенств.

Резюмируем:

  • неравенство может не иметь решений. К примеру: z 2 < - 2 . В самом деле, при любом действительном значении переменной z , мы будем иметь неверное числовое неравенство, опираясь на то, что, согласно свойствам степени, квадрат любого числа является неотрицательным числом. Оно, в свою очередь, никак не может быть меньше - 2 .
  • неравенство может иметь лишь одно решение. Например, неравенство f = 1 ≤ 0 имеет решение f = 1 , и оно единственно;
  • неравенство может иметь конечное количество решений: три, шесть и т.п. Как пример, рассмотрим неравенство | x 2 - 1 | ≤ 0 , решений которого существует ровно два: 1 и - 1 ;
  • неравенство может иметь бесконечно много решений. Например: t > 5 . Решением данного неравенства станет любое действительное число, большее 5: 13 , 87 , 601 , 8 2 5 и т.п.

Все вышесказанное верно и для неравенств с двумя, тремя и более переменными.

Определение 5

Решение неравенства с двумя переменными – это пара значений заданных переменных, при которых исходное неравенство с переменными преобразуется в верное числовое неравенство.

В качестве примера рассмотрим неравенство с двумя переменными y и z: y + 1 > 2 · z . Пара значений переменных y и z: 1 и 0 соответственно, являются решением заданного неравенства, поскольку подставив их, мы получим верное числовое неравенство: 1 + 1 > 2 · 0 . В то же время пара значений y = 2 , z = 4 не будет служить решением исходного неравенства: их подстановка создаст неверное числовое неравенство 2 + 1 > 2 · 4 .

Пара значений переменных зачастую записывается в скобках наподобие координат точек в прямоугольной системе координат. Например, для вышеуказанного примера решение запишется так: (1 , 0) .

Все вышесказанное верно и для неравенств с большим количеством переменных.

Определение 6

Решение неравенства с тремя, четырьмя и более переменными – это тройка, четверка и т.п. значений заданных переменных, при которых исходное неравенство преобразуется в верное числовое неравенство.

Например, рассмотрим неравенство с четырьмя переменными a 2 + b 2 + c 2 + d 2 ≤ 36 . Четверка значений этих переменных, такие как: a = 1 , b = 2 , c = 3 , d = 4 , являются решением исходного неравенства, поскольку, подставив их, мы получим верное числовое неравенство: 1 2 + 2 2 + 3 2 + 4 2 ≤ 36 .

Также рассмотрим такие понятия как «частное решение неравенства» и «общее решение неравенства».

Определение 7

К примеру, 17 – частное решение неравенства m < 101 . Еще одним частным решением указанного неравенства будет число 7 .

Определение 8

Общее решение неравенства – множество всех частных решений исходного неравенства.

Рассмотрим на том же примере: m < 101 . Общим решением этого неравенства будет множество чисел, меньших 101 .

Несмотря на частоту использования указанной терминологии, все же намного чаще применяют понятие решения неравенства без неких уточнений, наделяя при этом смыслом общего решения. В случае, когда необходимо определить отдельное решение, в исходном задании так и указывают.

Навык записи общего решения неравенства нужен для формирования ответа при решении задач. Сначала разберем принятые правила записи на примере решений неравенств с одной переменной.

Напомним, что решение неравенства с одной переменной – это либо число, либо множество чисел, т.е. числовое множество.

Определение 9

Когда равенство не имеет решений , пишут буквально – «нет решений», либо применяют знак пустого множества ∅ .

Когда общее решение – одно число , так его и записывают: 2 , - 1 , 15 ли 8 17 . А также можно заключить его в фигурные скобки.

Когда общее решение – несколько чисел (при этом их немного), нужно либо записать их по очереди, отделив запятой или точкой с запятой, либо – через запятую, заключив в фигурные скобки. Например: 6 , 12 , 4 5 или { 6 , 12 , 4 5 } .

Наконец, когда общее решение включает в себя бесконечно много решений , то применяют общепринятые обозначения множеств натуральных чисел (N) , целых чисел (N) , рациональных чисел (Q) , действительных чисел (R) , а также числовых промежутков, множеств отдельных чисел и т.п. В практике чаще встречаются простейшие неравенства и числовые промежутки. Пусть, решением некоторого неравенства станут: число 3 , полуинтервал (5 ; 9 ] и луч [ 13 ; + ∞) , тогда ответ запишется так: 3 , (5 , 9 ] , [ 13 , + ∞) , или: 3 ꓴ (5 , 9 ] ꓴ [ 13 , + ∞) , или: x = 3 , 5 < x ≤ 9 , x ≥ 13 .

Чтобы записать общее решение неравенства с двумя, тремя и более переменными при небольшом количестве решений, перечисляют их все; либо делают описание множеств переменных. К примеру, d – любое целое число, s равно 0 или 1 , t = - 3 , m = 17 .

Зачастую решение для неравенства с двумя переменными не записывают, а «зарисовывают», изображая решения неравенства на координатной плоскости. Пусть задано неравенство: 2 · х - у ≥ 5 ; его решение – все точки, расположенные на и ниже прямой, определяемой формулой: у = 2 · х - 5 .

Решением неравенства с тремя переменными станет некое множество точек трехмерного пространства.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Загрузка...
Top